Handling concept drift in data stream mining

Student: Manuel Martín Salvador
Supervisors: Luis M. de Campos and Silvia Acid

Universidad de Granada

Master in Soft Computing and Intelligent Systems
Department of Computer Science and Artificial Intelligence
University of Granada
Who am I?

1. Current: **PhD Student** in Bournemouth University

2. Previous:
 - **Computer Engineering** in University of Granada (2004-2009)
 - **Programmer and SCRUM Master** in Fundación I+D del Software Libre (2009-2010)
 - **Master in Soft Computing and Intelligent Systems** in University of Granada (2010-2011)
 - **Researcher** in Department of Computer Science and Artificial Intelligence of UGR (2010-2012)
Data streams

1. Continuous flow of instances.
 - In classification: instance = \((a_1, a_2, \ldots, a_n, c)\)

2. Unlimited size

3. May have changes in the underlying distribution of the data → concept drift
Concept drifts

- It happens when the data from a stream changes its probability distribution Π_{S_1} to another Π_{S_2}. Potential causes:
 - Change in $P(C)$
 - Change in $P(X|C)$
 - Change in $P(C|X)$
 - Unpredictable
 - For example: spam
Gradual concept drift

![Diagram of gradual concept drift showing historical data and sampling from S_I and S_{II} over time t, t_1, t_2, and $t+1$.]

Image: I. Žliobaitė thesis
Types of concept drifts

- **Sudden**
 - Class vs. Time
 - Immediate shift from c1 to c2

- **Incremental**
 - Class vs. Time
 - Gradual increase from c1 to c2

- **Gradual**
 - Class vs. Time
 - Steady state at c2

- **Recurring**
 - Class vs. Time
 - Periodic shift between c1 and c2

- **Blip**
 - Class vs. Time
 - Sudden spike from c1 to c2

- **Noise**
 - Class vs. Time
 - Random fluctuations around c1

Image: D. Brzeziński thesis
Types of concept drifts

- **Sudden**
 - Class: c1, c2
 - Time

- **Incremental**
 - Class: c1, c2
 - Time

- **Gradual**
 - Class: c1, c2
 - Time

- **Recurring**
 - Class: c1, c2
 - Time

- **Blip**
 - Class: c1, c2
 - Time

- **Noise**
 - Class: c1, c2
 - Time

Image: D. Brzeziński thesis
Example: STAGGER

Class=true if → color=red and size=small

or color=green or shape=circle

or size=medium or size=large

<table>
<thead>
<tr>
<th>Color</th>
<th>Shape</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Red</td>
<td>R</td>
<td>M</td>
</tr>
<tr>
<td>Blue</td>
<td>C</td>
<td>L</td>
</tr>
</tbody>
</table>

Target concept

$t = 1 \ldots 40.$

$t = 41 \ldots 80.$

$t = 81 \ldots 120.$

Image: Kolter & Maloof
Online learning (incremental)

- Goal: incrementally learn a classifier at least as accurate as if it had been trained in batch
- Requirements:
 1. Incremental
 2. Single pass
 3. Limited time and memory
 4. Any-time learning: availability of the model
Online learning (incremental)

• Goal: incrementally learn a classifier at least as accurate as if it had been trained in batch

• Requirements:
 1. Incremental
 2. Single pass
 3. Limited time and memory
 4. Any-time learning: availability of the model

• Nice to have: deal with concept drift.
Evaluation

Several criteria:

- Time → seconds
- Memory → RAM/hour
- Generalizability of the model → % success
- Detecting concept drift → detected drifts, false positives and false negatives
Evaluation

Several criteria:

- Time → seconds
- Memory → RAM/hour
- Generalizability of the model → % success
- Detecting concept drift → detected drifts, false positives and false negatives

Problem: we can't use the traditional techniques for evaluation (i.e. cross validation). → Solution: new strategies.
Evaluation: prequential

- Test y training each instance.
- Is a pessimistic estimator: holds the errors since the beginning of the stream. → Solution: forgetting mechanisms (sliding window and fading factor).

Sliding window: \(\frac{\text{errors inside window}}{\text{window size}} \)

Fading factor: \(\frac{\text{currentError} + \alpha \cdot \text{errors}}{1 + \alpha \cdot \text{processed instances}} \)

Advantages: All instances are used for training.
Useful for data streams with concept drifts.
Evaluation: comparing

Which method is better?
Evaluation: comparing

Which method is better? → AUC
Evaluation: drift detection

- First detected: correct.
- Following detected: false positives.
- Not detected: false negatives.
- Distance = correct – real.
Taxonomy of methods

Learners with triggers

- Change detectors
- Training windows
- Adaptive sampling

✓ *Advantages*: can be used by any classification algorithm.

✗ *Disadvantages*: usually, once detected a change, they discard the old model and relearn a new one.
Taxonomy of methods

Learners with triggers
- Change detectors
- Training windows
- Adaptive sampling

- **Advantages**: can be used by any classification algorithm.
- **Disadvantages**: usually, once detected a change, they discard the old model and relearn a new one.

Evolving Learners
- Adaptive ensembles
- Instance weighting
- Feature space
- Base model specific

- **Advantages**: they continually adapt the model over time
- **Disadvantages**: they don't detect changes.
Contributions

- Taxonomy: triggers → change detectors
 - MoreErrorsMoving
 - MaxMoving
 - Moving Average
 - Heuristic 1
 - Heuristic 2
 - Hybrid heuristic: 1+2

- P-chart with 3 levels: normal, warning and drift
Contributions: MoreErrorsMoving

• n latest results of classification are monitored \rightarrow
 History = \{e_i, e_{i+1}, \ldots, e_{i+n}\} (i.e. 0,0,1,1)

• History error rate:

\[
c_i = \frac{\sum_{j=0}^{n} e_j}{n} \quad |e_j \in H_i
\]

• The consecutive declines are controlled

• At each time step:
 • If $c_{i-1} < c_i$ (more errors) \rightarrow declines++
 • If $c_{i-1} > c_i$ (less errors) \rightarrow declines=0
 • If $c_{i-1} = c_i$ (same) \rightarrow declines don't change
Contributions: MoreErrorsMoving

- If consecutive declines > k → enable Warning
- If consecutive declines > k+d → enable Drift
- Otherwise → enable Normality
Contributions: MoreErrorsMoving

History = 8
Warning = 2
Drift = 4

Distance to real drifts:
46 - 40 = 6
88 - 80 = 8
Contributions: MaxMoving

- n latest success accumulated rates are monitored since the last change
 - History=$\{a_i, a_{i+1}, \ldots, a_{i+n}\}$ (i.e. $H=\{2/5, 3/6, 4/7, 4/8\}$)
- History maximum: $m_i = \max\{a_j | a_j \in H_i\}$
- The consecutive declines are controlled
- At each time step:
 - If $m_i < m_{i-1}$ → declines++
 - If $m_i > m_{i-1}$ → declines=0
 - If $m_i = m_{i-1}$ → declines don't change
Contributions: MaxMoving

<table>
<thead>
<tr>
<th>History</th>
<th>Warning</th>
<th>Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Detected drifts:
52 y 90

Distance to real drifts:
52-40 = 12
90-80 = 10
Contributions: Moving Average

Goal: to smooth accuracy rates for better detection.
Contributions: Moving Average 1

- m latest success accumulated rates are smoothed → Simple moving average (unweighted mean)

$$s_t = \frac{1}{m} \sum_{n=0}^{m-1} x_{t-n} = \frac{x_t + x_{t-1} + x_{t-2} + \cdots + x_{t-(m-1)}}{m}$$

- The consecutive declines are controlled
- At each time step:
 - If $s_t < s_{t-1}$ → declines++
 - If $s_t > s_{t-1}$ → declines = 0
 - If $s_t = s_{t-1}$ → declines don't change
Contributions: Moving Average 1

Smooth = 32
Warning = 4
Drift = 8

Detected drifts:
49 y 91

Distance to real drifts:
49-40 = 9
91-80 = 11
Contributions: Moving Average 2

- History of size n with the smoothed success rates →
 History=$\{s_i, s_{i+1}, \ldots, s_{i+n}\}$

- History maximum: $m_i = \max\{s_j | s_j \in H_i\}$

- Difference between s_t and m_{t-1} is monitored

- At each time step:
 - If $m_{t-1} - s_t > u$ → enable Warning
 - If $m_{t-1} - s_t > v$ → enable Drift
 - Otherwise → enable Normality

- Suitable for abrupt changes
Contributions: Moving Average 2

Smooth = 4
History = 32
Warning = 2%
Drift = 4%

Detected drifts:
44 y 87

Distance to real drifts:
44-40 = 4
87-80 = 7
Contributions: Moving Average Hybrid

- Heuristics 1 and 2 are combined:
 - If Warning_1 or Warning_2 \rightarrow enable Warning
 - If Drift_1 or Drift_2 \rightarrow enable Drift
 - Otherwise \rightarrow enable Normality
MOA: Massive Online Analysis

- University of Waikato → WEKA integration.
- Graphical user interface and command line.
- Data stream generators.
- Evaluation methods (holdout and prequential).
- Open source and free.

http://moa.cs.waikato.ac.nz
Experimentation

- Our data streams:
 - 5 synthetic with abrupt changes
 - 2 synthetic with gradual changes
 - 1 synthetic with noise
 - 3 with real data
Experimentation

• Our data streams:
 • 5 synthetic with abrupt changes
 • 2 synthetic with gradual changes
 • 1 synthetic with noise
 • 3 with real data

• Classification algorithm: Naive Bayes
Experimentation

• Our data streams:
 • 5 synthetic with abrupt changes
 • 2 synthetic with gradual changes
 • 1 synthetic with noise
 • 3 with real data
• Classification algorithm: Naive Bayes
• Detection methods:

<table>
<thead>
<tr>
<th>No detection</th>
<th>MovingAverage1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoreErrorsMoving</td>
<td>MovingAverage2</td>
</tr>
<tr>
<td>MaxMoving</td>
<td>MovingAverageH</td>
</tr>
<tr>
<td>DDM</td>
<td>EDDM</td>
</tr>
</tbody>
</table>
Experimentation

- Parameters tuning:
 - 4 streams and 5 methods → 288 experiments
Experimentation

- Parameters tuning:
 - 4 streams y 5 methods \rightarrow 288 experiments
- Comparative study:
 - 11 streams y 8+1 methods \rightarrow 99 experiments
Experimentation

- Parameters tuning:
 - 4 streams vs 5 methods \rightarrow 288 experiments
- Comparative study:
 - 11 streams vs 8+1 methods \rightarrow 99 experiments
- Evaluation: prequential
Experimentation

- Parameters tuning:
 - 4 streams y 5 methods → 288 experiments

- Comparative study:
 - 11 streams y 8+1 methods → 99 experiments

- Evaluation: prequential

- Measurements:
 - AUC: area under the curve of accumulated success rates
 - Number of correct drifts
 - Distance to drifts
 - False positives and false negatives
Experimentation: Agrawal
Experimentation: Electricity
Conclusions of experimentation

1. With abrupt changes:
 - More victories: DDM and MovingAverageH
 - Best in mean: MoreErrorsMoving → very responsive

2. With gradual changes:
 - Best: DDM and EDDM
 - Problem: many false positives → parameter tuning only with abrupt changes

3. With noise:
 - Only winner: DDM
 - Problem: noise sensitive → parameter tuning only with no-noise data

4. Real data:
 - Best: MovingAverage1 and MovingAverageH
Conclusions of this work

1. Our methods are competitive, although sensitive to the parameters → Dynamic fit
2. Evaluation is not trivial → Standardization is needed
3. Large field of application in industry
4. Hot topic: last papers from 2011 + conferences
Future work

1. Dynamic adjustment of parameters.
2. Measuring the abruptness of change for:
 - Using different forgetting mechanisms.
 - Setting the degree of change of the model.
3. Develop an incremental learning algorithm which allows partial changes of the model when a drift is detected.
Thank you